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Abstract 
Automated electroplating lines are typical integrated manufacturing systems consisting of pro-
cessing machines and material handling devices, i.e. tanks and hoists respectively. Printed 
circuit boards, usually known as parts, are produced in a number of tanks following the given 
process flow. Reentrance will occur when a part is performed in the same tanks more than once 
due to the process requirement. Since parts are transported between tanks by hoists, the hoists 
usually create bottlenecks. Multiple hoists, instead of a single hoist, are largely used to balance 
the line and improve the throughput. Since hoists move along the same overhead track, they 
cannot cross over each other. This paper considers multi-hoist scheduling problems during the 
reentrance of automated electroplating lines. The objective is to maximize the throughput of the 
line, the equivalent to minimizing the cycle time, by obtaining optimal schedules. In order to 
tackle the collisions between the multiple hoists, the principle of non-overlapping is applied. 
Since identical parts are commonly arranged to be produced at the same time in a line during a 
period, cyclic scheduling is applied to deal with the scheduling problems due to easy imple-
mentation. This paper considers multi-degree cycles instead of a simple cycle, i.e. 1-degree 
cycles. In summary, this paper deals with the scheduling problems in a much more complicated 
scenario, where reentrance, multiple hoists and multi-degree cycles are included. To our 
knowledge, these complications have not been dealt with before. To obtain optimal schedules, 
the operations in the lines are analyzed in detail. Based on this, a mixed integer linear pro-
gramming model is formulated to solve the scheduling problems in this scenario. This is the 
main contribution of this work. Finally, a numerical example, solved using the commercial soft-
ware ILOG CPLEX, is applied to illustrate the model proposed and to show the benefits of mul-
ti-degree cycles compared with simple cycles. 
 
Keywords: Multi-hoist scheduling problem, multi-degree cycles, reentrant electroplating lines, 
mixed integer linear programming, processing time window 

 

1. Introduction 
A typical integrated manufacturing 

system is the automated electroplating line 
for printed circuit board (PCBs) production. 
PCBs are knows as parts. A number of 
stages (i.e. stage 1, stage 2, …, stage n) are 
required to complete the parts in the lines, 
and the process stages are performed in 

related tanks, which are arranged in a line 
from left to right. A special condition in 
automated electroplating lines is where 
there are no buffers between the tanks. 
When a part completes its processing in a 
tank for a specific stage, the part should be 
picked up and transported to a tank for the 
next stage. Parts are transported between 
the tanks by hoists. Therefore, a part is 
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either being produced in a tank or held by a 
hoist for transportation.  

Moreover, each tank can produce, at 
most, one part at a time, known as tank 
capacity constraints. Similarly, each hoist 
can only hold, at most, one part at a time. 
Hence, a hoist should be available when 
the hoist is scheduled to transport a part, 
known as hoist availability constraints. 
Since all parts are transported by a shared 
hoist(s), the hoists usually become the bot-
tleneck resource. Therefore, more than one 
hoist is generally applied to the lines so as 
to balance the production and improve the 
throughput. In multi-hoist lines, these mul-
tiple hoists share and move on the same 
overhead track. Hoists cannot cross over 
each other. Therefore, more constraints are 
required to avoid any conflicts between the 
hoists. In addition, the practical processing 
times of the parts are within given time 
ranges, known as time window constraints. 
There are other scenarios relevant to the 
processing times. When the upper bound is 
infinite, time window constraints are not 
required. When, the upper bound is exactly 
equal to the lower bound, it is known as a 
no-wait scenario. These two scenarios can 
be viewed as special cases of scenarios 
with time window constraints. 

Moreover, there are other more com-
plicated lines. For instance, some tanks 
may need to be visited more than once in 
accordance with the process flow, i.e. the 
same tanks perform more than one stage. 
This is also known as reentrance. This pa-
per considers multi-hoist lines with reen-
trance. 

In practice, the production flow usu-
ally arranges identical parts to be produced 
during a specific period. Cyclic scheduling 
is commonly used due to its easy imple-
mentation. The time duration of a cycle is 
called the cycle time. The degree is used to 
describe the number of parts that are in-
serted and finished during a cycle. 1-degree 
cycles are also known as simple cycles. 
One part is inserted and is completed dur-
ing a simple cycle. A K-degree cycle (i.e. 
multi-degree cycle) produces K parts. In 

order to compare a K-degree cycle with a 
simple cycle, the mean cycle time is de-
fined and calculated based on dividing the 
cycle time of the K-degree cycle by K. The 
mean cycle time is the (mean/average) time 
required to produce a part. For a given de-
gree, the objective is to obtain scheduling 
that minimizes the cycle time, i.e. maxim-
izes the throughput. 

Since hoists are applied in automated 
electroplating lines, scheduling problems in 
these lines are known as the hoist schedul-
ing problem (Philips and Unger, 1976; Ma-
nier and Bloch, 2003; Lopez and Roubellat, 
2008). 

This paper deals with the hoist sched-
uling problem by considering multiple 
hoists and reentrance together. Time win-
dow constraints are also considered. In 
addition, multi-degree cycles are analyzed. 
To our knowledge, this is the first work 
focusing on this special scenario (i.e. mul-
ti-hoist, reentrance, and multi-degree cy-
cles). The objective is to obtain schedules 
that will minimize the (mean) cycle time. 
To achieve this, the problem is modelled 
based on the mixed integer linear pro-
gramming approach. Detailed operations of 
the lines are also analyzed. To deal with 
this complicated problem, a revised sce-
nario without reentrance was analyzed first. 
This is the necessary condition of the com-
plicated scenario. Then, the reentrance was 
analyzed. The problem is modelled by an 
MILP formulation. An instance of the 
model is solved using ILOG CPLEX.  

The remainder of this paper is orga-
nized as follows. Section 2 reviews related 
work on the hoist scheduling problem. Sec-
tion 3 describes the special scheduling 
problem dealt with in this paper. Corre-
sponding notations are listed. Section 4 
compares the scheduling problem consid-
ered in this paper with the revised scenario, 
where reentrance is relaxed. The revised 
scenario has been dealt with by Li and 
Fung (2013a). For completeness, con-
straints of the revised scenario are formu-
lated based on Li and Fung’s (2013a) work. 
Section 5 analyzes operations concerning 
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reentrance and develops corresponding 
constraints. In section 6, an example is 
used to illustrate the model proposed. Fi-
nally, this paper is concluded in section 7. 

2. Literature Review 
Philips and Unger (1976) proposed the 

first mathematical programming model (i.e. 
a mixed integer linear programming model) 
for the hoist scheduling problem. Shapiro 
and Nuttle (1988) developed a branch and 
bound approach to deal with the same 
problem. Since then, mathematical pro-
gramming approaches, e.g. mixed integer 
linear programming (MILP) and branch 
and bound (B&B), have been increasingly 
applied to solve complicated scheduling 
problems in diverse scenarios. 

Liu et al. (2002) proposed a compre-
hensive mixed integer programming model 
for the complicated lines with reentrance 
and parallel tanks in a simple cycle. Steiner 
and Xue (2005) reviewed scheduling prob-
lems in reentrant robotic cells, which have 
the same configuration as re-entrant elec-
troplating lines. As for multi-hoist lines, 
Leung et al. (2004) developed the first 
mixed integer linear programming model in 
simple cycles. Middle-size instances (e.g. 
less than 20 tanks) can be solved using 
Leung et al.’s model with reasonable com-
putational times. For large-size instances 
(e.g. 24 tanks), Zhou and Li (2009) pro-
posed a new mixed integer linear pro-
gramming model based on the no overlap-
ping rule. In this way, the hoist assignment 
is determined first and final schedules are 
obtained using the MILP model. In fact, 
schedules with the no overlapping rule may 
not achieve global optimal solutions, but 
computational times are saved, i.e. 
large-size instances can be solved in rea-
sonable time. Che et al. (2014) developed 
the MILP model to improve Leung et al.’s 
model. Jiang and Liu (2014) proposed a 
new MILP model and a B&B approach so 
as to deal with multi-hoist lines in simple 
cycles. 

As for multi-degree cycles, Zhou et al. 
(2012) formulated the first MILP model for 

basic lines, i.e. the lines considered by 
Phillips and Unger (1976). Li and Fung 
(2014) developed a new MILP model for 
basic lines in multi-degree cycles. Then, Li 
and Fung (2014) extended their model to 
lines with reentrance. There is only one 
single hoist. For multi-hoist lines, Li and 
Fung (2013a) formulated the MILP model 
based on the no overlapping rule in mul-
ti-degree cycles. General multi-hoist lines 
were dealt with in Li and Fung (2013b) 
using the MILP model. In Li and Fung 
(2013a, 2013b), reentrance (or parallel 
tanks), were not considered with the multi-
ple hoists at the same time. MILP models 
were also applied to deal with scenarios 
with multiple part types (Lei et al. 2014; El 
Amraoui et al. 2013b). 

Heuristics and evolution algorithms 
have also been used to deal with the hoist 
scheduling problem. Zhou and Li (2008) 
proposed a heuristic algorithm to deal with 
two-hoist lines in simple cycles. El Amra-
oui et al. (2013a) developed a genetic algo-
rithm for single-hoist scheduling problems 
with time window constraints. In addition, 
no-wait scenarios were solved in polyno-
mial time (Che et al. 2002, Che et al. 2009, 
and Che et al. 2012).  

Consequently, this paper deals with 
the multi-degree hoist scheduling problem 
and considers multiple hoists and reen-
trance together using mathematical pro-
gramming (i.e. mixed integer linear pro-
gramming). It extends Li and Fung’s work 
(2013a, 2013b) which only deals with mul-
ti-degree hoist scheduling with multiple 
hoists without the occurrence of reentrance. 
Moreover, it is more complicated when 
compared with EI Amraoui’s (2013a, 
2013b) work that only deals with single 
hoist scheduling problems.  

3. Problem Description and Notation 
This paper deals with the multi-hoist 

line with reentrance, as shown in Figure 1. 
There are n stages indexed as S1, S2, ..., Sn 
performed in n - 1 tanks numbered as 1, 
2, ..., n - 1 from left to right. The indexes of 
the tanks increase from left to right. Except 
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for the reentrant stage, a later stage is per-
formed in a tank with a larger index, i.e. a 
tank that is further to the left. Moreover, 
stages p-1 and p+1 are both performed in 
tank p-1 and stage p+1 is the reentrant 
stage. H hoists transport parts between 
tanks to complete the corresponding stages. 
Sp-1 and Sp+1 use the same tank p - 1. To 
avoid conflict between the hoists, the no 
overlapping rule is applied in this paper, i.e. 
hoist h picks up parts processed in stage 

lh-1+1 to stage lh. Moreover, it is assumed 
that tank p-1 and tank p are aligned with 
the same hoist. 

In order to express the scheduling 
problem exactly and formulate the MILP 
model, the parameters and decision varia-
bles are listed as follows. These notations 
are adopted from previous work (Phillips & 
Unger, 1976; Liu et al., 2002; Leung et al., 
2004; Zhou & Li, 2009; Li & Fung 2013a, 
2013b, 2014).

 

 
Figure 1: A Multi-hoist Line with Reentrance 

3.1 Given Parameters 
n: the number of tanks. The tanks are la-

beled 1; 2; …; n; the loading tank is 
numbered as 0 and the unloading tank 
is numbered as n + 1; 

p: the stage p - 1 and stage p + 1 use the 
same tank p - 1; 

H: the number of hoists; 
K: the number of parts entering and exiting 

the line within a cycle, i.e. the degree of 
a cycle; 

move (k,i): the hoist move when transport-
ing a part from stage i to stage i+1 for 
the k-th time; 

lh: the parameter indicating the hoist as-
signment. Hoist 1 is responsible for 
moves from 0 to l1 (to move out of tank 
0 to l1) and hoist h for moves lh-1 +1 to 
lh; 

Li: the minimum amount of processing time 
a part requires in stage i; 

Ui: the maximum amount of processing 
time a part is permitted in stage i; 

ai: the time required to unload a part from 
stage i corresponding to a move(*, i); 

bi: the time required to unload a part from 
stage i + 1 corresponding to a move(*, 
i); 

di: the travel time for the hoist carrying a 
part from stage i to stage i+1 including 
the unloading time (ai) and the loading 
time (bi); 

ei,j: the travel time from stage i to stage j 
for an empty hoist; 

∆: a very small positive number; 
M: a very large positive number 

3.2 Decision Variables 
T: cycle time; 
tk,i: the starting time of move(k; i); 
tmin 1: the starting time of the last move(K, i) 

within a cycle for hoist 1; 
tmin h: the starting time of the first move(1, i) 

within a cycle for hoist h, h = 2, …, H; 
tmax h: the starting time of the last move(K, i) 

within a cycle for hoist h, h = 2, …, H; 
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xi: is equal to 1 if the move(K, i) is the last 
move for hoist 1; otherwise, it is equal 
to 0, where i = 1, 2, …, l1; 

h
iz : is equal to 1 if the move(K; i) is the 

last move for hoist h; otherwise, it is 
equal to 0, where h = 2, 3, …, H and i = 
lh-1, lh-1 + 1, …, lh; 

h
js : is equal to 1 if the move(1, j) is the last 

move for hoist h; otherwise, it is equal 
to 0, where h = 2, 3, …, H and j= lh-1, 
lh-1 + 1, …, lh; 

,
h
i jw : is equal to 1 if the move(1, j) is the 

last move and the move(K i) is the last 
move for hoist h; otherwise, it is equal 
to 0, where h = 2, 3, …, H and i, j = lh-1, 
lh-1 + 1, …, lh; 

, ; ,r i u jy : is equal to 1 if tr,i ≤ tu,j; otherwise, it 

is equal to 0, where h = 1, 2, …, H,  i, 
j = lh-1, lh-1 + 1, …, lh and r, u = 1, 2, …, 
K; 

, ; , 1r i u iy  : is equal to 1 if tr,i + di – ai < tu,j + 

bi+1; otherwise, it is equal to 0, where i 
= l1, l2, …, lh. 

4. Model the Revised Line 
Assume that there was a virtual and 

additional tank p  performing Sp+1. Tank 

p  is placed between tank p and tank p+1, 

as shown in Figure 2. A revised scenario is 
formed, where the reentrance is relaxed 
compared to the original scenario shown in 
Figure 1. Moreover, constraints of the re-
laxed scenario, as shown in Figure 2, are 
necessary constraints of the original sce-
nario shown in Figure 1. The operations in 
the revised scenario shown in Figure 2 
should be analyzed and modeled first. Then, 
the operations concerning reentrance are 
analyzed, i.e. Sp-1, Sp and Sp+1. The revised 
scenario has been dealt with by Li and 
Fung (2013a). For completeness, the con-
straints of the revised scenario are formu-
lated based on Li and Fung’s (2013a) work. 
Simplified explanations are given as well. 

 

 
Figure 2: A Revised Multi-hoist Line without Reentrance 

4.1 Constraints Concerning Hoist 1 

4.1.1 Definitional and Initial Constraints 

1

max 1 1,0
1

( )
l

i i i
i

t d e x T


    (1) 

For 10,1,...,i l , 

max 1 ,K it t  (2) 

For 10,1,...,i l , 

max 1 , ( 1)K i it t x M    (3) 

1

1

1
l

i
i

x


  (4) 

Constraints (2)-(4) guarantee that xi 
and tmax 1 are both well defined, i.e. tmax 1 is 
the starting time of the last move per-
formed by hoist 1. Constraint (1) guaran-
tees that a cycle starting at hoist 1 picks up 
a part from stage 0. Hoist 1 comes back to 
stage 0 (i.e. loading tank) before the end of 
a cycle, for starting the next cycle. 
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4.1.2 Hoist Availability Constraints 
For r, u = 1, 2, …, K; i  j and i, j = 0, 

1,…, l1, 

, , 1, , ; ,(1 )u j r i i i j r i u jt t d e y M      (5) 

, , 1, , ; ,r i u j j j i r i u jt t d e y M     (6) 

Constraints (5) (6) guarantee that the 
y’s are well defined and that the hoist did 
not perform two moves simultaneously, i.e. 
moves performed by hoist 1 individually as 
a sequence. 

4.2 Constraints Concerning Hoist h, 
Where h = 2, 3, …, H 

4.2.1 Definitional and Initial Constraints 
For i = lh-1 + 1, …, lh and h = 2, 3, …, H,  

max ,h K it t  (7) 

For i = lh-1 + 1, …, lh and h = 2, 3, …, H, 

max , ( 1)h
h K i it t z M    (8) 

For h = 2, 3, …, H, 

1 1

1
h

h

l
h
i

i l

z
 

  (9) 

For j = lh-1 + 1, …, lh and h = 2, 3, …, H, 

min 1,h jt t  (10) 

For j = lh-1 + 1, …, lh and h = 2, 3, …, H, 

min 1, ( 1)h
h j it t s M    (11) 

For h = 2, 3, …, H, 

1 1

1
h

h

l
h
i

i l

s
 

  (12) 

For i = lh-1 + 1, …, lh and h = 2, 3, …, H, 

1

,
1

0
h

h

l
h h
i j i

j l

w z
 

   (13) 

For j = lh-1 + 1, …, lh and h = 2, 3, …, H, 

1

,
1

0
h

h

l
h h
i j i

j l

w s
 

   (14) 

As constraints (2)-(4) are for hoist 1, 
constraints (7)-(9) guarantee that tmax h and 

h
iz are well defined. Similarly, constraints 

(7)-(9) guarantee that tmax h and h
is  are 

well defined. Constraints (13) and (14) 

make ,
h
i jw  well defined. 

4.2.2 Constraints for Cycle time T 
For h = 2, 3, …, H, 

max hT t  (15) 

1 1

min max

1, ,
1 1

( )
h h

h h

h h

l l
h

i i j i j
j l i l

T t t

d e w
 


   

 

  
 (16) 

Constraint (15) means that each move 
should start during the cycle. Constraint 
(16) guarantees that there is enough time 
for hoist h moving to the stage that is con-
cerned with the first move from the stage 
concerned with the end of the last move. 

4.2.3 Hoist Availability Constraints 
For r, u = 1, 2, …, K and i = l1, l2, …., 

lH-1, 

, , 1,

, ; ,(1 )

u j r i i i j

r i u j

t t d e

y M

  

 
 (17) 

, , 1,

, ; ,

r i u j j j i

r i u j

t t d e

y bM

  


 (18) 

Constraints (17) and (18) are similar 
to Constraints (5) and (6) concerning hoist 
1. 

4.3 Constraints to Avoid Conflicts be-
tween Hoists 

For r, u = 1, 2, …, K and i = l1, l2, …., 
lH-1, 

, 1 ,

, ; , 1

( )

( 1)
u i r i i

r i u i

t t d

y M




 

   
 (19) 

, , 1 1

, ; , 1

( )r i i i u i i

r i u i

t d b t a

y M
 



   

 
 (20) 

Constraints (19) and (20) make the y’s 
well defined and guarantee that there are no 
conflicts concerning tank lh+1, i.e. there are 
no conflicts between the hoists. 

4.4 Tank Capacity Constraints 
For k = 1, 2, …, K-1 and i = 1, 2, …, n, 

, 1; , 1, 1; 1,k i k i k i k iy y     (21) 

, 1; 1, , 1; ,1k i k i k i k iy y     (22) 

1, 1; , , 1; ,1k i k i k i k iy y     (23) 
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In a line, move(*,i-1) inserts a part 
into stage i and move(*,i) picks up a part 
from stage i. Because stage i (with only one 
tank performing the stage) can process, at 
most, one part at a time, move(*,i-1) and 
move(*,i) must alternate with each other. 
Constraints (21)-(23) guarantee this condi-
tion. 

4.5 Time Window Constraints 
For k = 1, 2, …, K-1 and i = 1, 2, …, n, 

, , 1 1

, 1; ,

( )

(1 )
k i k i i

i k i k i

t t d

L y M
 



 

  
 (24) 

, , 1 1

, 1; ,

( )

(1 )
k i k i i

i k i k i

t t d

U y M
 



 

  
 (25) 

1, , 1 1

, 1; ,

( )k i k i i

i k i k i

t t d

L y M
  



 

 
 (26) 

, , 1 1

, 1; ,

( )

(1 )
k i k i i

i k i k i

t t d

U y M
 



 

  
 (27) 

If the stage is empty at the start of a 
cycle, parts are inserted and completed 
within the current cycle. Constraints (24) 
and (25) guarantee that time window con-
straints are satisfied in this case. If the 
stage is occupied at the start of a cycle, the 
part being processed is inserted during the 
previous cycle. The last inserted part dur-
ing this current cycle will be processed at 
the end of the cycle. Constraints (28) and 
(29) correspond to the parts in this case. 
K-1 parts are inserted and completed dur-
ing the cycle. Time window constraints 
concerning these K-1 parts are formulated 
by constraints (26) and (27). 

4.6 Binary and Non-Negative Con-
straints 

1,0 0t   (30) 

For k = 1, 2, …, K-1 and i = 0, 1, …, n, 

, 0k it   (31) 

For k = 1, 2, …, K-1 and i = 0, 1, …, n, 

, 1,k i i k it d t    (32) 

For i = lh-1 + 1, …, lh  

 0,1ix   (33) 

For i = lh-1 + 1, …, lh and h = 2, 3, …, H, 

 0,1h
iz   (34) 

For j = lh-1 + 1, …, lh and h = 2, 3, …, H, 

 0,1h
js   (35) 

For i, j = lh-1 + 1, …, lh and h = 2, 3, …, 
H, 

 , 0,1h
i jw   (36) 

For r, u = 1, 2, …, K; i  j; i, j = lh-1 + 
1, …, lh and h = 2, 3, …, H, 

 , ; , 0,1r i u jy   (37) 

For r, u = 1, 2, …, K; i = l1, l2, …, lH-1, 

 , ; , 1 0,1r i u iy    (38) 

5. Model Reentrance 
As shown in Figure 1, stage p + 1 is 

performed in tank p – 1, where stage p -1 is 
also performed. When a part is completed 
in tank p for stage p, the part will be trans-
ported to tank p - 1 for stage p + 1. A con-
clusion of great significance is expressed 
by Lemma 1. 

Lemma 1: It is infeasible that tank p - 
1 and tank p are occupied at the same time. 

Proof: Assume that part A and part B 
were being processed in tank p - 1 and p at 
the same time. Assume that part A was for 
stage p - 1. When part A is completed, it 
should be transported to tank p, which is 
occupied by part B. When part B is com-
pleted, it should be transported to tank p - 1 
(for stage p + 1), which is occupied by part 
A. Hence, the deadlock occurs regardless 
of whether part A or part B is competed 
first.  

Assume that part A is for stage p + 1. 
This means that part A entered the line be-
fore part B. When part A was transported 
from tank p to tank p-1 for stage p+1, tank 
p is empty. Moreover, tank p-1 started to 
process part A for stage p+1. It is infeasible 
to process part B at tank p - 1 for stage p - 
1 at the same time and then to transport it 
to tank p. 

Therefore, it is infeasible that tank p - 
1 and tank p are occupied at the same time.  

As a result, there are four feasible 
cases concerning Sp-1, Sp and Sp+1, based 
on the statuses of tanks p - 1 and p. These 
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cases are listed as follows with corre-
sponding move sequences. 

Case (1): Both tanks p - 1 and p are 
empty at the start of a cycle. 

The sequence of corresponding moves 
should be move(1, p -2) → move(1, p - 1) 
→ move(1, p) → move(1; p + 1) → … 
→ move(k, p -2) → move(k, p - 1) → 
move(k, p) → move(k, p + 1) → … → 
move(1, p -2) →  move(1, p - 1) → 
move(1, p) → move(1; p + 1). 

Case (2): Tank p - 1 is occupied for 
stage p - 1 and tank p is empty at the start 
of a cycle. 

The sequence of corresponding moves 
should be move(1, p - 1) → move(1, p) 
→ move(1; p + 1) →move(1, p -2) → … 
→  move(k, p - 1) →  move(k, p) → 
move(k, p + 1) → move(k, p -2) → …  
→  move(1, p - 1) →  move(1, p) → 
move(1; p + 1) → move(1, p -2). 

Case (3): Tank p - 1 is occupied for 
stage p + 1 and tank p is empty at the start 
of a cycle. 

The sequence of corresponding moves 
should be move(1, p) → move(1; p + 1) 

→move(1, p -2) → move(1, p - 1) → … 
→  move(k, p) →  move(k, p + 1) → 
move(k, p -2) → move(k, p - 1)  → …  
→  move(1, p) →  move(1; p + 1) → 
move(1, p -2). → move(1, p - 1). 

Case (4): Tank p - 1 is empty and tank 
p is occupied at the start of a cycle. 

The sequence of corresponding moves 
should be move(1; p + 1) →move(1, p -2) 
→ move(1, p - 1) →move(1, p) → … 
→ move(k, p + 1) → move(k, p -2) → 
move(k, p - 1)  →move(k, p) → …  → 
move(1; p + 1) →  move(1, p -2). → 
move(1, p - 1) → move(1, p). 

Table 1 shows the expressions of four 
cases by y's. Therefore, one more con-
straint is required to guarantee that one of 
these cases should occur, namely Con-
straint (39). 

For k = 1, 2, …, K, 

, 2; , 1 , 1; ,

, ; , 1 , 2; , 1 2

k p k p k p k p

k p k p k p k p

y y

y y

  

  



    (39) 

Until now, the MILP model is com-
plete. The objective is to minimize cycle 
time T subject to Constraints (1)-(39).

Table 1: Express These Cases by y’s 
 yk,p-2;k,p-1 yk,p-1;k,p yk,p;k,p-+1 yk,p-2;k,p+1 

Case (1) 1 1 1 1 
Case (2) 0 1 1 0 
Case (3) 1 1 0 0 
Case (4) 1 0 1 0 

Table 2: Minimal and Maximal Processing Times (seconds) 
Stage i 1 2 3 4 5 6 7 8 9 10 11 12 
Tank i 1 2 3 4 5 6 7 8 9 10 11 12 
Li 160 150 180 50 20 20 60 20 20 50 180 20 
Ui 180 180 200 70 40 40 80 40 50 70 240 40 
Stage i 13 14 15 16 17 18 19 20 21 22 23 24 
Tank i 13 14 15 16 17 18 19 20 19 21 22 23 
Li 80 30 50 100 70 70 140 50 60 30 70 150 
Ui 120 50 80 130 100 90 180 70 80 50 90 180 
 

6. Illustrative Example 
A numerical example is used to illus-

trate the MILP model proposed in this pa-
per. The example is modified from Zhou 
and Li’s (2009) example. Using a personal 

computer with an i5-3337U 1.89GHz CPU 
and a 4GB RAM using the 64-bit Windows 
8 OS, the commercial software CPLEX 
12.6 under the default mode is used to 
solve the model with the example. 



Optimal Multi-Degree Cyclic Scheduling of Re-entrant Electroplating Lines Including 17 
Multiple Hoists without Overlapping 

There are 2 hoists and 23 tanks per-
forming 24 stages. Stage 19 and stage 21 
are both performed in tank 19, i.e. p = 20. 
Moving times di = 14 seconds, where i = 0, 
1, ..., 24. Empty moving time eij = 6 + |i – j| 
seconds, where i, j = 0, 1, …, 25 and i ≠ j. 
ai = 3 and bi = 4, where i = 0, 1, …, 24. The 
processing times are listed in Table 2. 

Tables 3, 4 and 5 list the results of the 
optimal schedules for 1-degree, 2-degree 
and 3-degree cycles respectively. Compu-
tation times are 1.52 CPUs, 130.52 CPUs 

and 1820.36 CPUs, respectively. Computa-
tion time around half an hour is viewed as 
an acceptable time, considering that the 
scheduling problem is off-line. Cycle times 
are 459s, 864s and 1259s respectively. 
Compared to 1-degree cycles, the im-
provements in the 2-degree cycles and 
3-degree cycles are 3.79% and 6.53% re-
spectively, i.e. (449-864/2)/449*100% = 
3.79% and (449-1259/3)/449*100% = 
6.53%. The results illustrate the benefits of 
multi-degree cycles. 

Table 3: Result of 1-degree Cycle (l1 = 12, T = 449s) 
i 0 1 2 3 4 5 6 7 8 9 10 11 12 
ti 0 174 341 86 150 197 231 315 369 419 34 255 289 

i  13 14 15 16 17 18 19 20 21 22 23 24 
ti  405 0 64 182 266 350 87 151 226 290 374 111 

Table 4: Result of 2-degree Cycle (l1 = 12, T = 864s) 
i 0 1 2 3 4 5 6 7 8 9 10 11 12 

t1,i 0 174 341 79 143 197 231 315 369 433 51 255 289 
t2,i 398 572 742 535 599 633 684 766 800 834 447 658 711 
i  13 14 15 16 17 18 19 20 21 22 23 24 

t1,i  419 483 64 178 262 346 136 211 305 369 453 110 
t2,i  811 864 547 671 755 839 507 571 645 696 780 621 

Table 5: Result of 3-degree Cycle (l1 = 12, T = 1259s) 
i 0 1 2 3 4 5 6 7 8 9 10 11 12 

t1,i 0 174 361 59 143 197 251 335 389 453 31 225 276 
t2,i 309 483 647 555 619 669 703 785 834 885 527 760 809 
t3,i 730 914 1108 860 936 987 1038 1132 1179 1226 961 1155 1202 
i  13 14 15 16 17 18 19 20 21 22 23 24 

t1,i  52 96 160 274 27 131 325 409 459 560 0 194 
t2,i  383 436 523 637 358 496 613 690 764 828 664 858 
t3,i  943 1007 1078 1202 721 805 968 1037 1131 1175 912 1106 

 

7. Conclusions 
This paper considers multi-hoist 

scheduling with reentrance in multi-degree 
cycles. The no overlapping rule is applied 
and an MILP model is proposed based on 
this. The MILP model proposed is the first 
for this especially complicated scenario, i.e. 
multi-hoist lines with reentrance in mul-
ti-degree cycles. A numerical example is 
used to illustrate the model proposed. The 
results also show the benefits of mul-
ti-degree cycles.  

This paper considers the special case 
of reentrance, i.e. stage p-1 and stage p+1 

are performed in the same tank. For future 
work, a general case where stage q and 
stage v (|v-q|>2) are performed in the same 
tank will be investigated. Moreover, this 
paper applies the no overlapping rule to 
avoid conflict between the hoists. One di-
rection is to pay more attention to the case 
where this rule is relaxed, which is a more 
general condition. Moreover, more atten-
tion will be paid to heuristic and/or me-
ta-heuristic methods to deal with large-size 
instances.  
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