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Abstract 
This paper presents a comparison of the convergence properties between the HCODEQ, 

CODEQ, and differential evolution (DE) methods. The concepts of chaotic search, opposi-
tion-based learning, and quantum mechanics are used in the CODEQ method to overcome the 
drawback of selecting the crossover factor and scaling factor used in the DE method. However, 
a larger population size must be used in the CODEQ method. That is a drawback for all evolu-
tionary algorithms (EAs). To overcome this drawback, acceleration operation and migrating 
operation are embedded into the CODEQ method, i.e. HCODEQ method. The migrating opera-
tion can be used to maintain the population diversity, which guarantees a high probability of 
obtaining the global optimum. And the aim of the accelerated operation is to speed up the 
convergence. However, this faster convergence also leads to a higher probability of obtaining a 
local optimum because the diversity of the population descends faster during the solution pro-
cess. So, these two operations can act as a trade-off operation for the population diversity and 
convergence to accelerate the search of the global solution. To prove the convergence property 
of the HCODEQ method, four benchmark functions from the literature are used to compare the 
performance of the HCODEQ, CODEQ, and DE methods. Numerical results show that the 
HCODEQ method outperformed other methods. 
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1. Introduction 
CODEQ (Omran & Salman, 2009; 

Omran & Salman, 2009; Omran & Salman, 

2010; Omran, 2010) is a population-based, 

parameter-free meta-heuristic algorithm 

integrating concepts from chaotic search, 

opposition-based learning, Differential 

Evolution (DE) and quantum mechanics. 

DE as developed by Stron and Price (1996). 

It has proved to be a promising candidate 

in solving real-valued optimization prob-

lems (Amjad, Salam & Saif, 2015; Zamuda 

& Brest, 2014; Havangi, Nekoui, Teshneh-

lab & Taghirad, 2014; Reddy & Sahoo, 
2014; Liang, Qu, Mao, Niu & Wang, 2014; 

Chiou & Chang, 2010; Chiou & Chang, 

2009; Price, 1997). DE is a stochastic 

search and optimization method. The fittest 

in an offspring competes one-on-one with 

that of the corresponding parent, which is 

different from the other EAs. This type of 

competition will lead to a faster conver-

gence rate. However, this faster conver-

gence also leads to a higher probability of 

obtaining a local optimum because the di-

versity of the population descends faster 

during the solution process. To maintain 

the diversity of the population, a larger 

population size must be used like the other 
evolutionary algorithms (EAs) use. So the 

selection of parameters is very important 

for the DE method because some parame-

ters are more sensitive to the problem. For 

example, a fixed scaling factor is used in 

DE. Using a smaller scaling factor, DE 

becomes increasingly robust. However, 

much computational time should be spent 

to evaluate the objective function. DE with 

a larger scaling factor result generally falls 
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into local solution or non-convergence. 

Two parameters including the scaling fac-

tor and mutation operator are more difficult 

to set in DE. So, the concept of quantum 

mechanics is needed in CODEQ to over-

come these two parameters selection prob-
lem. At the same time, the concepts of op-

position-based learning and the chaotic 

search can be combined as an excluded 

operation used to speed up the convergence. 

The basic concept of opposition-based 

learning is the consideration of an estimate 

and its corresponding opposite estimate 

simultaneously to approximate the current 

candidate solution (Omran & Salman, 

2009). And chaotic sequences can be used 

to test the searching ability of heuristic 

optimization method (Omran & Salman, 
2009). Due to the need to execute the 

crossover operation, DE is not rotationally 

invariant (Omran & Salman, 2009). To 

avoid the problem, the crossover operation 

of DE was removed in CODEQ. However, 

a larger population size is still used in 

CODEQ method. That’s a drawback for all 

evolutionary algorithms (EAs). 

To overcome the problem associated 

with a larger population size used in 

CODEQ algorithm, two operations includ-
ing acceleration operation and migrating 

operation are embedded into original 

CODEQ method called HCODEQ method. 

The use of these two operations act as a 

trade-off operator which can increase the 

convergence speed without decreasing the 

diversity among individuals. Migrating 

operation maintains the diversity of popu-

lation, which guarantees a high probability 

of obtaining the global optimum. And the 

accelerated operation is used to accelerate 

the convergence. To illustrate the conver-
gence property of the proposed HCODEQ 

method, four benchmark functions from the 

literature are used to compare the perfor-

mance of the proposed method with the 

HCODEQ, CODEQ, and DE methods in 

this study. From the computation results, it 

is observed that the convergence property 

of the HCODEQ method is better than the 

other methods. 

2. HCODEQ Method 
The main idea of the HCODEQ 

method is to use two operations, migrating 

operation and acceleration operation, to act 
as a trade-off operator to overcome the 

drawback associated with the use of a larg-

er population size in the CODEQ method. 

The use of the acceleration operation can 

speed up the convergence of the HCODEQ. 

And the population diversity can be main-

tained by the migrating operation. The 

process of the HCODEQ method is briefly 

described in the following. 

Step 1. Initialization 

Input system data and generate the in-
itial population. The initial population is 

chosen randomly and would attempt to 

cover the entire parameter space uniformly. 

The uniform probability distribution for all 

random variables as following is assumed 

as: 

𝑍𝑖
0 = 𝑍𝑚𝑖𝑛 + 𝜎𝑖 ∙ (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛), 𝑖 =

1, … , 𝑁𝑝 (1) 

where 𝜎𝑖 ∈ (0, 1]  is a random number. 

The initial process can produce 𝑁𝑝 indi-

viduals of 𝑍𝑖
0randomly. 

Step 2. Mutation operation 

The essential ingredient in the muta-

tion operation is the difference vector. Dif-
ferent from the DE algorithm, the concept 

of the quantum mechanics (Omran & Sal-

man, 2009; Omran & Salman, 2009; Om-

ran & Salman, 2010; Omran, 2010) is used 

to generate the noise replica from the indi-

vidual parent in HCODEQ algorithm which 

is expressed as follows: 

𝑍̂𝑖
𝐺+1 = 𝑍𝑖

𝐺 + (𝑍𝑖1
𝐺 − 𝑍𝑖2

𝐺 ) ∙ l𝑛(1 𝑢⁄ ), 𝑖 =
1, … , 𝑁𝑝, 𝑖1 ≠ 𝑖2 ≠ 𝑖 (2) 

where u ∈ (0, 1] is a random number. 

Step 3. Estimation and selection 

𝑍𝑖
𝐺+1 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑍𝑖

𝐺), 𝑓(𝑍̂𝑖
𝐺+1)} (3) 

𝑍𝑏
𝐺+1 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑍𝑖

𝐺)} (4) 

where minarg  means the argument of 

the minimum. 

Step 4. Exclude operation if necessary 

To increase the convergence of the 

HCODEQ algorithm, the excluded opera-

tion is considered. First, a new individual is 

created as follows: 
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𝑍𝑤
𝐺+1 = {

𝑍𝑚𝑖𝑛 + 𝑍𝑚𝑎𝑥 − 𝛾 ∙ 𝑍𝑤𝑜𝑟𝑠𝑡
𝐺+1 ,                          𝑖𝑓 𝛿 ≤ 0.5

𝑍𝑏𝑒𝑠𝑡
𝐺+1 + |𝑍𝑖1

𝐺+1 − 𝑍𝑖2
𝐺+1| ∙ (2 ∙ 𝑐𝐺+1 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5) 

where 𝛾  and 𝛿  are randomly generated 
numbers uniformly distributed in the range 

of (0,1). 𝑍𝑤𝑜𝑟𝑠𝑡
𝐺+1  and 𝑍𝑏𝑒𝑠𝑡

𝐺+1  are the worst 

and best individuals in the (G+1)th genera-

tion. 𝑐𝐺+1 is the chaotic variable defined 

as follow: 

𝑐𝐺+1 = {
𝑐𝐺 𝑝⁄ ,                       𝑖𝑓 𝑐𝐺 ∈ (0, 𝑝)

(1 − 𝑐𝐺) (1 − 𝑝), 𝑖𝑓 𝑐𝐺 ∈ [𝑝, 1)⁄
 (6) 

where 𝑐0 and 𝑝 are initialized randomly 
within the interval (0,1). 

The worst individual in the G-th gen-

eration is replaced by the generated indi-

vidual if the fitness of the generated indi-

vidual is better than that of the worst indi-

vidual in the G-th generation.  

Step 5. Migrating operation if necessary 

In order to effectively enhance the in-

vestigation of the search space and reduce 

the choice pressure of a small population, a 

migrating operation is introduced to regen-

erate a new diverse population of individu-

als. The new population is yielded based on 

the best individual 𝑍𝑏
𝐺+1. The g-th gene of 

the i-th individual is as follows: 
𝑍𝑖𝑔

𝐺+1 =

{
𝑍𝑏𝑔

𝐺+1 + 𝜇𝑖 ∙ (𝑍𝑔 𝑚𝑖𝑛 − 𝑍𝑏𝑔
𝐺+1), 𝑖𝑓 𝛽 < (𝑍𝑏𝑔

𝐺+1 − 𝑍𝑔 𝑚𝑖𝑛)/(𝑍𝑔 𝑚𝑎𝑥 − 𝑍𝑔 𝑚𝑖𝑛)

𝑍𝑏𝑔
𝐺+1 + 𝜇𝑖 ∙ (𝑍𝑔 𝑚𝑎𝑥 − 𝑍𝑏𝑔

𝐺+1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

 (7) 

where 𝜇𝑖  and 𝛽  are randomly generated 

numbers uniformly distributed in the range 

of [0,1]; 𝑖 = 1, … 𝑁𝑝; and 𝑔 = 1, … , 𝑛. 

The migrating operation is executed 
only if a measure fails to match the desired 

tolerance of population diversity. The 

measure is defined as follows: 

ε = ∑ ∑ 𝜂𝑍 (𝑛 ∙ (𝑁𝑝 − 1)) < 𝜀1⁄

𝑛

𝑔=1

𝑁𝑝

𝑖=1
𝑖≠𝑏

 

 (8) 

where 


𝑍

= {0, 𝑖𝑓 𝜀2 < |
𝑍𝑔𝑖

𝐺+1−𝑍𝑏𝑖
𝐺+1

𝑍𝑏𝑖
𝐺+1 |

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 (9) 

Parameters 𝜀1, 𝜀2 ∈ [0,1] express the 

desired tolerance for the population diver-

sity and the gene diversity with respect to 

the best individual. 𝜂𝑍 is the scale index. 

From (8) and (9), it can be seen that the 

value 𝜀 is in the range of [0,1]. If 𝜀 is 

smaller than 𝜀1, then the migrating opera-

tion is executed to generate a new popula-

tion to escape the local point; otherwise, 

the migrating operation is turned off. 

Step 6. Acceleration operation if neces-

sary 

When the best individual in the pre-

sent generation cannot be improved any 

longer by the mutation operation, a decent 

method is then employed to push the pre-

sent best individual towards attaining a 

better point. The accelerated phase is ex-

pressed as follows: 

𝑍𝑏
𝐺+1 = {

𝑍𝑏
𝐺+1, 𝑖𝑓 𝐽(𝑍𝑏

𝐺+1) < 𝐽(𝑍𝑏
𝐺)

𝑍𝑏
𝐺+1 − 𝛼∇𝐽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (10) 

where 𝑍𝑏
𝐺 denotes the best individual as 

obtained from equation (4). The gradient of 

the objective function, ∇𝐽, can be approx-

imately calculated by finite difference. The 

step size 𝛼 ∈ (0, 1] in (10) is determined 

by the descent property. Initially, 𝛼 is set 

to one to obtain the new individual. 

Step 7. Repeat step 2 to 6 until the ter-

minal conditions are achieved. 

The computational process of the 

HCODEQ is stated using a flowchart as 

shown in Figure 1. 

 

 
Figure 1: Main Calculation Procedures of the 

HCODEQ Method 
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3. Examples 
The standard benchmark functions 

from the literature are frequently used to 

achieve the testing for reliability, efficiency 
and validation of optimization algorithms. 

To validate and compare the performance 

of optimization algorithms, the benchmark 

functions should have diverse properties, 

including modality, separability, and valley 

landscape so that they can be truly useful to 

test new algorithms in an unbiased way 

(Jamil & Yang, 2013; Molga & Smutnicki, 

2005). Four benchmark functions are in-

vestigated and the computation results are 

used to compare the performance of the 
HCODEQ method with that of the CODEQ 

and DE methods. 

Example 1: Let us consider the mini-

mization problem which is described by: 

min
𝑍1,𝑍2

𝐽(𝑍1, 𝑍2) = 100(𝑍1
2 − 𝑍2)2

+ (1 − 𝑍1)2 
 (11) 

where −2.048 ≤ 𝑍1 ≤ 2.048 and 

−2.048 ≤ 𝑍2 ≤ 2.048. 

The first benchmark function is a Rosen-

brock’s Valley Function. This is a contin-

uous, differentiable, non-separable, scala-

ble, and unimodal function. Rosenbrock’s 

valley is a classic optimization problem, 

also known as the banana function or the 

second function of De Jong. The global 

optimum lies inside a long, narrow, para-
bolic shaped flat valley. To find if the val-

ley is trivial, however, convergence to the 

global optimum is difficult and hence, this 

problem has been frequently used to test 

the performance of optimization algorithms. 

This function has a global minimum value 

of 0 at (𝑍1, 𝑍2) = (1,1). To verify the per-

formance of the HCODEQ method, the 

convergence property of the HCODEQ 

method, CODEQ method and DE method 
are compared via this example. The set-

ting-factors were used in the HCODEQ 

method to solve this example. The popula-

tion size is set to 5. The maximum genera-

tion is 300. The tolerances of the gene di-

versity and population diversity are set to 

0.01 and 0.1, respectively. The set-

ting-factors used in the CODEQ method to 

solve this example as follows. The popula-

tion size is set to 5. The maximum genera-

tion is 300. These initial-setting factors for 

the DE method are the same as that for the 

CODEQ except that DE uses the scaling 

factor fixed to 0.1 and the crossover factor 
fixed to 0.5. For comparison, the six strate-

gies of mutation operation of DE method 

are respectively used to solve this example. 

The solution for this example is repeatedly 

solved one hundred times. The best and 

worst values among the best solutions of 

the one hundred runs are respectively ex-

pressed in Table 1. The average for the best 

solutions of the one hundred runs and the 

standard deviation with respect to the av-

erage are also shown in this table. A small-

er standard deviation implies that almost all 
the best solutions are close to the average 

best solution. That is, it has low sensitivity 

with respect to the different initial popula-

tion. From the Table 1, the standard devia-

tion for the HCODEQ method is smaller 

than all mutation strategies of DE method 

and CODEQ method. And the average best 

value of the HCODEQ method is smaller 

than DE and CODEQ methods. So, the 

parameter selection problem is alleviated. 

That implies that the HCODEQ method is a 
robust method compared with DE and 

CODEQ methods. Table 2 lists the compu-

tational results when the population size is 

reassigned to 10 to solve this example one 

hundred times again. From the computation 

results, the convergent properties of the 

HCODEQ method are better than the DE 

method and CODEQ method. The numbers 

of the parameter used in the HCODQ, DE, 

and CODEQ methods are 4, 5, and 2, re-

spectively. Although the number of the 

parameters used in HCODEQ method is 
greater than that of the CODEQ method, 

the parameter selection problem in 

HCODEQ method is alleviated than in the 

CODEQ method. The number of times that 

these best solutions were smaller than 

0.00001 are also shown in Tables 1 and 2. 

From Table 1, the number of the successful 

runs for the best solutions that were smaller 

than 0.00001 is 40, 29, 44, 73, 70, and 19 
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for six different strategies of mutation op-

erations. The number of successful runs for 

the best solutions that were smaller than 

0.00001 is 79 and 98 in the CODEQ and 

HCODEQ methods, respectively. From 

Table 2, the number of successful runs for 
the best solutions that were smaller than 

0.00001 is 89, 98, 100, 100, 99, and 96 for 

six different strategies of mutation opera-

tion. The number of the successful runs for 

the best solutions that were smaller than 

0.00001 is 100 for both the CODEQ and 

HCODEQ methods. Based on the compu-

tational results, the convergence property 
of the HCODEQ method is outperformed 

than the DE and CODEQ methods. 

Table 1: Computation Results for One Hundred Runs of Example 1, population size = 5 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 3.10e-17 4.35e-23 1.52e-24 1.98e-12 2.47e-14 1.60e-19 0 1.77e-10 

Worst 9.290304 149.9470 8.871615 1.927184 8.136053 3665.115 6.304407 0.0042637 

Average 0.371408 2.21562 0.558783 0.028183 0.093700 37.36613 0.103410 4.31e-05 

STD 1.270686 15.00289 1.470137 0.195969 0.815074 366.4436 0.638052 4.26e-04 

Count 40 29 44 73 70 19 79 98 

Table 2: Computation Results for One Hundred Runs of Example 1, population size = 10 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 3.99e-19 1.99e-26 0 2.70e-15 5.04e-16 7.78e-20 0 1.66e-10 

Worst 2.873036 0.457369 3.02e-09 2.48e-06 1.32e-05 1.087578 1.61e-27 5.79e-07 

Average 0.039089 0.008802 3.02e-11 6.24e-08 1.92e-07 0.010948 1.67e-29 8.94e-08 

STD 0.290182 0.061975 3.02e-10 3.29e-07 1.43e-06 0.108753 1.61e-28 1.24e-07 

Count 89 98 100 100 99 96 100 100 

 

Example 2. Let us consider the mini-

mization problem is described by 

min
𝑍1−𝑍2

𝐽(𝑍1, 𝑍2) =
1

1
𝐾 + ∑ 𝑓𝑗

−1(𝑍1, 𝑍2)25
𝑗=1

 

 (12) 

where 𝑓𝑗(𝑍1, 𝑍2) = 𝑐𝑗 + ∑ (𝑍𝑖 − 𝑎𝑖𝑗)
62

𝑖=1 , 

−65.536 ≤ 𝑍1 , 𝑍2 ≤ 65.536 , K = 500, 𝑐𝑗 = 𝑗  

and 
[𝑎𝑖𝑗 ] =

[
−32 −16 0
−32 −32 −32

   
16 32 −32

−32 −32 −16
   

−16 … 0
−16 … 32

  
16 32
32 32

] 

The second benchmark function is the 

Fifth function of De Jong. This is a multi-

modal test function. This function has a 

global minimum value of 0.998 at 
(𝑍1, 𝑍2) = (−32, −32) as also shown by 

Michalewicz (1999). 

In Example 2, the parameters for the 

HCODEQ, CODEQ, and DE methods are 

selected as those of Example 1. The solu-

tion for this example is repeatedly solved 

one hundred times. The best and worst 
values among the best solutions of the one 

hundred runs are respectively expressed in 

Table 3. The average for the best solutions 

of the one hundred runs and the standard 

deviation with respect to the average are 

also shown in this table. From Table 3, the 

standard deviation for the HCODEQ 

method is smaller than all mutation strate-

gies of DE method and CODEQ method. 

And the average best value of the 
HCODEQ method is smaller than DE and 

CODEQ methods. That implies that the 

HCODEQ method is a robust method 

compared with DE and CODEQ methods 

again. From the computation results, the 

convergent properties of the HCODEQ 

method are better than that of the DE 

method and CODEQ method. Table 4 lists 

the computational results when the popula-

tion size is reassigned to 10 to solve this 

example one hundred times again. From 

Table 4, the standard deviation for the 
HCODEQ methods is smaller than that of 

all mutation strategies of DE and CODEQ 

methods. And the average best value of the 

HCODEQ method is less than that of DE 

and CODEQ methods. A smaller standard 

deviation also implies that the method has a 

low sensitivity with respect to the different 

initial population. So the parameter selec-
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tion problem of the HCODEQ method is 

alleviated. 

Example 3: Let us consider the mini-

mization problem as described by 
min𝑧1,𝑧2

 𝐽(𝑧1, 𝑧2) = ⌊1 + (𝑧1 + 𝑧2 + 1)2(19 −

14𝑧1 + 3𝑧1
2 − 14𝑧2 + 6𝑧1𝑧2 + 3𝑧2

2)⌋ × [30 +
(2𝑧1 − 3𝑧2)2(18 − 32𝑧1 + 12𝑧1

2 + 48𝑧2 − 36𝑧1𝑧2 +

27𝑧2
2)]  (13) 

where 

−2 ≤ 𝑧1, 𝑧2 ≤ 2 
 

The third benchmark function is the 

Goldstein Price function which is a con-

tinuous, differentiable, non-separable, 

non-scalable, and multimodal function. 

This function has a global minimum value 
of 3.00 as also shown by Michalewicz 

(1999). In Example 3, the parameters for 

the HCODEQ, CODEQ, and DE methods 

are selected as those of Examples 1 and 2. 

The solution for this example is repeatedly 

solved one hundred times. The best and 

worst values among the best solutions of 

one hundred runs are expressed in Table 5. 

The average for the best solutions of one 

hundred runs and the standard deviation 

with respect to the average are also shown 
in this table. Table 6 lists the computational 

results when the population size is 

re-assigned to 10 to solve this example one 

hundred times again. From the computa-

tional results in Tables 5 and 6, the con-

vergence property of the HCODEQ has 

outperformed other methods. 

Example 4: Let us consider the mini-

mization problem as described by: 

min𝑧1,𝑧2
𝐽(𝑧1, 𝑧2) = (4 − 2.1𝑧1

2 +
𝑧1

4

3
) 𝑧1

2 +

𝑧1𝑧2 + (−4 + 4𝑧2
2)𝑧2

2 (14) 

where −3 ≤ 𝑧1 ≤ 3 and −2 ≤ 𝑧2 ≤ 2 

 

The fourth benchmark function is the 

Six-Hump Camel Back Function. The 

Six-Hump Camel Back Function is a global 

optimization test function. Within the 

bounded region of it owns six local minima, 

two of them are global ones (Molga & 

Smutnicki, 2005). Like the Goldstein Price 

function, the Six-Hump Camel Back Func-
tion is also a continuous, differentiable, 

non-separable, non-scalable, and multi-

modal function. This function has a global 

minimum value of -1.0316 as also shown 

by Michalewicz (1999). In Example 4, the 

parameters for HCODEQ, CODEQ, and 

DE methods are selected as those of Ex-

amples 1, 2, and 3. The solution for this 

example is repeatedly solved one hundred 

times. The best and worst values among the 

best solutions of the one hundred runs are 
respectively expressed in Table 7. The av-

erage for the best solutions of the one hun-

dred runs and the standard deviation with 

respect to the average are also shown in 

this table. Table 8 lists the computational 

results when the population size is reas-

signed to 10 to solve this example one 

hundred times again. From the computa-

tional results in Tables 7 and 8, the con-

vergence property of the HCODEQ has 

outperformed that of other methods.

Table 3: Computation Results for One Hundred Runs of Example 2, population size = 5 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 

Worst 23.80943 20.15349 23.80943 21.07269 20.15349 29.46829 12.67051 10.76318 

Average 6.638564 7.660642 9.558399 3.534609 3.467216 7.254276 5.137431 1.514822 

STD 5.958980 5.351153 6.847977 4.415153 4.328542 5.999762 3.963695 1.490098 

Count 23 9 12 50 58 18 22 75 

Table 4: Computation Results for One Hundred Runs of Example 2, population size = 10 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 

Worst 12.67051 16.44091 21.98841 10.76318 15.50382 10.76318 11.71870 1.992554 

Average 3.679119 4.374463 7.520116 1.677553 1.55700 2.51205 1.875342 1.007950 

STD 3.401745 4.240636 5.983056 1.831971 1.997564 2.771254 1.936128 0.099455 

Count 43 28 10 77 84 60 72 97 
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Table 5: Computation Results for One Hundred Runs of Example 3, population size = 5 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

Worst 86.43120 84.00614 1226.673 84.00000 84.00000 840.0000 84.00 3.00 

Average 8.218919 13.37741 36.23754 10.29000 5.430000 21.39463 5.5444273 3.00 

STD 17.15447 22.96446 148.3339 21.31689 12.19311 85.47584 10.257319 2.37e-10 

Count 83 70 66 87 95 55 86 100 

Table 6: Computation Results for One Hundred Runs of Example 3, population size = 10 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

Worst 3.00 84.00 84.00 30.00 3.00 3.00 3.00 3.00 

Average 3.00 5.160005 5.70 3.81 3.00 3.00 3.00 3.00 

STD 1.84e-15 9.918590 12.43529 4.629058 2.22e-15 1.59e-15 2.48e-15 2.56e-15 

Count 100 94 94 97 100 100 100 100 

Table 7: Computation Results for One Hundred Runs of Example 4, population size = 5 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Worst -0.21546 -0.21546 -0.21546 -0.21546 -0.21546 -0.11326 -1.008884 -1.0316 

Average -1.01513 -1.03163 -0.98741 -1.01531 -1.02347 -1.00195 -1.031298 -1.0316 

STD 0.114818 0.081609 0.181142 0.114839 0.081616 0.161086 0.0022964 1.64e-08 

Count 93 95 88 98 99 86 86 100 

Table 8: Computation Results for One Hundred Runs of Example 4, population size = 10 
Mutation 

Strategy 
1 2 3 4 5 6 CODEQ HCODEQ 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Average -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

STD 1.12e-15 4.63e-14 1.12e-15 1.12e-15 1.85e-12 1.12e-15 1.12e-15 5.95e-09 

Count 100 100 100 100 100 100 100 100 

 

4. Conclusion 
The convergence property of  

HCODEQ, CODEQ, and DE methods are 

compared via four benchmark functions 

from the literature. The concepts of chaotic 

search, opposition-based learning, and 

quantum mechanics are used in the 

CODEQ method to overcome the drawback 

in selecting the crossover factor, scaling 

factor, and mutation operator used in the 

original differential evolution (DE) method. 
The main idea for the HCODEQ method is 

to use two operations, migrating operation 

and acceleration operation, to act as a 

trade-off operator to overcome the draw-

back associated with the use of a larger 

population size in CODEQ method. The 

use of the acceleration operation can speed 

up the convergence of HCODEQ. And the 

population diversity can be maintained by 

the migrating operation. The numbers of 

the parameter used in the HCODQ, DE, 

and CODEQ methods are 4, 5, and 2, re-

spectively. Although the number of the 

parameters used in HCODEQ method is 

greater than the CODEQ method, the pa-

rameter selection problem in HCODEQ 

method is alleviated than in CODEQ 
method. From the computational results of 

the four examples, the convergence prop-

erty of the HCODEQ method is better than 

that of CODEQ and DE methods. Finally, 

the proposed HCODEQ method can be 

used to solve the optimization problem in 

the management field, for example, pro-

duction and inventory control, logistics 

network, and so on. 
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